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Abstract 

The possibility of having titian in a renormalizablt cosmological model is 
investigated. The Ccwnic No Hair Conjecture is proved to hold for all Bianchi types 
except Biancbi IX. By the use of a conformal transformation on the metric we show 
that these mod& AX equivalent to the ones described by the Einstein-Hilbert action 
for gravity mi&naUy coupled to a set of scalar fields with titionar)- potentials. 
Henceforth, we prove that in&ationary solutions behave aa attractors in solution 
space, making it a natural event in the evolution of such models. 
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1 Introduction 
. 

Inflation has become one of the most desirable features of any cosmological model. 

There are several reasons for this, ranging from particle physics considerations to the 

large scale structure of the spacetime around us. Since most of these issues have been 

extensively discussed in the literature we shall just refer the reader to the relevant source 

[Il. 
One amongst many problems solved by inflation is that of explaining the isotropy and 

large scale homogeneity of the observable part of the Universe (ai’ w IOr’cm). As a 

bonus inflation provides us with a mechanism to produce density perturbations that could 

be responsible for the formation of structure in the Universe after inflation (see Turner in 

[I]). 

At the moment there are several models for inflation, the so called new inflation 

proposed by Albrecht and Steinhardt [l], the chaotic inflation proposed by Linde [l) and 

the higher derivative gravity models [2], [3]. The first two models are based on a rather 

similar theory, namely that of gravity coupled m.inimalIy to a real scalar field. Even 

though the ideas behind these two theories are rather different, in practice one of the few 

differences is the form of the potential on which the scalar field moves (e.g. Coleman- 

Weinberg type vs. mada or A$‘). Th e important feature of these two models is the 

existence of a very smell coupling constant (see Turner in [l]). However, the chaotic 

scenario seems to be more naturalin the sense that the form of the potential needed is 

more generic and the restrictions imposed on the initial conditions for the fields are less 

severe. The third model is substantially different, both in principle and in practice. It is 

based on adding extra terms, proportional to the Piemann tensor square and some of its 

contractions, to the standard Einstein-Hilbert action. The appeal of this theory resides 

in the fact that it contains inflationary solutions without having an inflaton scalar field 

[z] - [4]. Inflation is then a consequence of (almost) pure gravitational interactions. 
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In the first two theories inflation appears as a generic feature, not only when the 

spacetime is the familiar flat or open Robertson-Walker but even when anisotropic case 

are considered [a]. These results have been extended to a large class of inhomogeneous 

open or flat models (nonpositive three curvature i.e. ‘R G P 5 0) for the case of new 

inflation [9], and for the R’ model [4-71. W e would like to add that some arguments have 

been given in support of the idea that closed models will also inflate unless their spatial 

topology is Ss or Ss x S’ (see Barrow in 171). This would certainly enlarge, and contribute 

to the measure of the set of models that undergo inflation [lo]. 

The motivation for any of the above theories is understandable, almost all theories 

of the Universe contain at least one scalar field and gravity. The usual argument for 

adding higher derivative terms to the gravitational action is the renormalizability of the 

theory [ll]. The divergences in the gravitational action to first order are proportional to 

R’, R, R* and R,, Rww so it is only natural to add these terms in order to renormalize 

the theory. On the other hand we know of the existence of scalar fields in the theory so 

it seems only natural to have at least one of these. The renormalizability of the theory 

demands an additional interaction term between the graviton and the scalar field of the 

form -f(#R [ll]. The lagrangian can then be written as (see Brown and Collins in [ll]) 

L = L, + L* + L,* (1.1) 

where 12, and tg are the gravitational and scalar field lagrangians respectively and I& 

represents the interaction term. These are given by 

C, = A + noR + ao (R’ - 4R,,R’” + R,,, iYv) 

+b&,,,C’” + coRa 

t* = -;wa - V(d) 
(1.2) 

0.3) 

(1.4) & 99 = -@R 



where V(d) is some arbitrary renormalizable potential, and A, no, I, as, bo, es are constants 

(satisfying the renormalizationgroup equations[ll]). no’ is proportional to 16vC,v, but 

for practical purposes we will let the proportionality factor unspecify. C,, is the Weyl 

tensor and will vanish for conformally flat metrics (like in the RW case). The quantity mul- 

tiplying a0 is the Gauss-Bonnet density, when integrated over the invariant four-volume 

,/Zjd’z it gives a topological invariant, so its variation vanishes and as a consequence it 

does not contribute to the equations of motion, for this reason we shall set ae = 0 (see 

Barth and Christensen in [II]). 

The theory described by the above equations is very general and it contains many 

special cases that have been studied in the past. Since all of these are important in their 

own right we have compiled two tables of references containing most of these and indicated 

whether these undergo inflation. The cases have been separated into two classes. Table 

one represents purely gravitational models, i.e. &se = L+ = 0, while table two comprises 

the cases where a scalar field is present. The standard case ae = b, = CC, = t = 0 has been 

omitted from the table while those marked with *** are the ones studied in this paper. 

We would like to comment that setting ~0 = 0 does not mean we are setting the 

gravitational constant to zero, but rather that either at some stage in the early universe 

the quadratic terms or the t&R terms are the dominant ones in the dction, or that 

gravity is induced by a symmetry breaking mechanism where 4 acquires a non zero VEV 

determining the effective gravitational constant [12]. 

The paper will be organize as follows. In Sec. 2. we will review the induced gravity 

case and by the use of the ccrrformal transformation recast its results and consequences, 

we could think of this as the case (no = 0). In Set 3. we shall study a much more general 

case. We shell finalire with some comments and conclusi.xs 



2 Induced Gravity Model 

This model was first proposed by Zee [12] as an attempt to use symmetry breaking 

to generate the Einstein term in the action at low energies. The model is described by a 

lagrangian of the form 

L = +R - $74)’ - V(d) (2.1) 

where V(d) = a(@-$)s and 8nc s -t is positive. In this model the present gravitational 

constant would be given by the VEV of the scalar field, i.e. GN = (e < 4 >I)-‘. The 

existence of inflationary solutions had already been noticed by Acceta et al [12]. They 

found that exponential and power law inflation occured for 4 + oo and 4 + 0 respectively 

for not very special values of e and X. 

We will now show, using the conformal transformation technique, why is it that this 

model inflates naturally in the isotropic case and subsequently generalize this result to the 

anisotropic models. By conformally transforming the metric, the action can be rewritten 

as the Einstein-Hilbert action in minimal coupling with a scalar field (this was first done 

for the R + eR2 model by Whitt [17]). Th e a d vantage of this transformation is clear, we 

can analyze the behaviour cf the scalar field simply by looking at the potential ;n which 

it moves. 

Let us consider the following conformal transformation: 

&,&, E 2epgw 

In teims of this new metric the action coming from (2.lj becomes 

S = /&z&i [&R(b) - ;(ti$)’ - +($)I 

(2.2) 

(2.3) 

(2.4) *= d6+ilnd 
Ic 
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ii($) s g$ -$ - 
1 

4-2~4~]a (2.5) 

Fig.1 shows the potential 6’($) for 11 = 1, e = i, % = 1. It is easy to understand why 

the model undergoes exponential inflation for large positive 11, ( 4 + co), the potential 

is so flat the that model behaves as if dominated by an effective cosmological constant 

A.,, = &, producing the usual slow rolling of the $ field. In these regime we can 

transform back to the real spacetime where 4 lives and see that inflation takes place M 

well. Following the exact same logic we deduce that power law inflation is also possible 

when $I is a large negative number (4 + 0). The asymptotic form of p($) is given by 

P - exp( -4 
: 

&I+) for $+-co 

then provided e < f ( the exponent is smaller than fi ) power law inflation will occur. 

The condition on e ensures that the potential is not too steep. Power-law inflation in the 

fictitious j-world will always guarantee power-law inflation in the real g-world, we can see 

this by setting the scale factor i 0: is then a 0: ts and if i > 1 then p = 2; - 1 > 1. 

Let us now turn to the anisotropic cases. We could of course try to prove the generality 

of the result by direct calculation, but this could be extremely difficult and time consum- 

ing. Instead, we shall use a shortcut. In order to go from one representation to the other 

we have not specified the form of the metric g,,,, (or &,,,) so we can obtain our results in 

either urorldand transform it back. Notice that in the 4 world the energy-momentum ten- 

sor for the scalar field subtracting A,,, satisfies the dominant and weak energy conditions. 

Hence, we can apply Wald’s cosmic no hair conjecture [8] and conclude that inflation will 

always take place (except maybe in Bianchi 1X). This result can be further extended 

to s class of mhomogeneous spacetimes with nonposi:ive three curvature. Inflation is a 

natural event if the universe starts out from a region of large positive 4. If, on the other 

hand C$ + 0 ($I + -co), we can use a similar result found by Moss and Sahni [8] for the 

case of power law inflation (unfortunately this result only applies to the case of a massive 
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scalar field) to infer the generality of the event. 

3 Renormalizable Model 

In this section we shall consider a more general case. The model is described by eq. 

(1.1) with b, = 0, 

L = &R - +R + SR’ - ;(V# - V(d) 

where a cosmological constant A has been included in V(4). 

As in 9.2, we will use a conformal transformation to reduce the system (1.1) to that 

of gravity coupled to two scalar fields. Such a system is easy to analyze. We need only 

to know the form of the potential to deduce the dynamical behaviour of the scalar fields. 

We will outline the method for finding the conformal transformation that will do the 

trick. Firstly, write down the basic equations coming from the variation of (l.l), then 

perform an arbitrary conformal transformation of the form 

sw = e 
L(oq 

SW 

where w is an unknown function to be determined later. Secondly, calculate the second 

order derivative of R and w, identify these terms so’as to eliminate them from the equations 

and finally write the leftover as UEinstein’a ” equations with some .scaZaar fields. This 

technique can be used for an even more general case [14]. 

Following the above method, we find 

w = -$b E l ln [I - tc’f# + 2aR] 

and the equivalent action 

s = /&,,& [-&R(j) - $9$)‘- $-fi’+(Q4)‘- QAG)] 

(3.2) 

(3.3) 
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where the potential in the s-world is 

q4,ti) = & [ 1- (1 - Ky&)e-Jf*+ 2 + e-vz*‘v(~) I (3.4) 

Now we shall analyse the potential f?(+, +) in two different cases: 

Case A : V(d) = 0 

Let us focus our attention in the case t > 0. The other case is rather similar so we will 

omit it. It is useful to define a critical value for the scalar field as 

I$. z (K’<)-’ (3.5) 

then the potential I!?(&$) has a zero at 

(3.6) 

The potential is shown in Figs. 2a and 2b. From this and Eq. (3.4) we find that there 

is a very flat plateau in the potential for large $, unless 4 is much larger than &. The 

evolution of such a model might proceed as follows. Near the Planck scale the Universe is 

probably in an excited state and its energy is larger than the plateau. We could imagine 

then the universe-particle hovering over the potential. As time goes by it might land on 

a region of large $. If so then it will effectively becomes dominated by s cosmological 

constant, hence invoking the No Hair Conjecture, we would conclude that, if it is an open 

or fiat Bianchi model (or a sufficiently constraint Bianchi IX), it will inflate. If 11~ > 0 

but not to large, then the model will not inflate (it might even land at the minimum of 

tht potential, however we belive this is highly unlikely). It then continues on a slow roll 

towards the minimum inflating and becoming more isotropic and De Sitter-Kke as it goes 

along, ending completely isotropic at the bottom of the potential. The isotropisation time 

is of order or&e Hubble expansion time i s 26, when translated into the g-world, the 

time scale becomes 

T s exp(--+)i 
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where $t is the value of + when the universe becomes isotropic (see also [a]). Because of 

slow rolling during this period, the value of $ changes very slowly hence the definition of 

& is not too ambiguous. 

One interesting feature in this model must be mentioned : After the inflationary period 

has come to an end, the universe evolves towards the zero of the potential (as defined by 

(3.6). Moreover, from this eq. we find that the value of the 4 field at zero is bounded 

by the critical value, i.e. 4s < c&. This is interesting because in the anisotropic case a 

universe where gravity is not minimally coupled to a scalar field is bound to encounter 

a singularity at 4 > &. This effect was first discussed by Starobinskii [16]. However, if 

curvature square terms are taken into account (as in our model), then the universe always 

evolves into the region with I$ < &. Hence, even if the universe starts with 4 > de, it 

does reach its present state. 

Case B : V(d) # 0 

This case is a little more involved as it depends on the explicit form of V(q5). fT(&li)) is 

depicted in Figs. 3a and 3b for V(d) = -$n2qb2 + iA@. U A evertheless, if the scale of the 

potential V(d) is much smaller than o(d,$) (for example: V(d) might be a GUT scale 

or below while o(#,+) could be at the Planck scale), then we can analyse the potentials 

separately. When the universe is more or less at the Planck scale, we can neglect the 

contribution coming from V(d). The dynamical behaviour of the scalar fields are the 

same as in Case A, i.e inflation is driven by the R’ term. However, after inflation, when 

the universe evolves into the potential “zero” line, the contribution from V(d) becomes 

important. 

Hereafter we shall discuss the evolution of the universe after such a stage. A relation 

similar to (3.6) can be found between $ and 4, and using it we can rewrite the action and 



the potential o(d,$) as 

s = /d%o[&R(j) - ~(:_~~,$&(‘%+)’ - fil 

0 = (1 - (;,&)‘p) 

(34 

(3.9) 

where & E [t?E(l - 601-r as in [13]. This theory is the same as one with non-minimal 

coupling to gravity and has already been investigated in [13]. There it was found that 

inflation only occurs if t < 0. In particular, if C is negative and V(d) contains a 4’ term, 

then the model has two inflationary periods, providing a realization of the double inflation 

proposed by Turner and Silk [15] ( see also [S]). We would like to point out that generally 

one of the difficulties of Planck scale inflation is that a closed universe may collapse more 

or less in a Planck time before reaching the GUT stage, however the Planck scale potential 

is troublesome because it produces too large density perturbations. If, on the other hand, 

we find double inflation (one at Planck scale, the other at GUT scale), we can solve this 

problem. The first inflation will prevents the universe from collapsing, while the second 

one would guarantees the present universe isotropy and homogeneity on the large scale, 

while providing the appropriate density perturbations. 

As a special case of this model we will investigate the induced gravity model with an 

R1 term (no linear term in R). Here the conformal factor is given by 

w = kin [%se#s + 2aR] 

snd the ptitmtial in t!le i-world is 

i’(q%,$) s & [l - 2e+se--fifiv] ’ + e-fi”$V(d) 

where V(d) = a(@ - 9’)’ . .4gain for a similar choice of parameters we show i-(4,$) 

in Fig. 4. We find that double inflation is also present for exactly the same reasons as 

mentioned earlier. The first inflation occurs due to the curvature squared term. At the 

end of this period the potential V(4) b ecomes important and since its shape is the same 
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as that shown in Fig.1, we find a second inflation, this could be exponential or power law 

depending on exactly where it l%nds. 

4 Concluding Remarks 

In this paper, we have considered a renormalizable theory, which consists of curvature 

square and non-minimally coupled terms. We have shown that by using conformal trans- 

formations on the metric these theories can be converted into the normal gravitational 

theory in minimal coupling with a set of scalar fields. These theories are much simpler 

to analyze by using elementary techniques about the motion of point particles in a given 

potential than the original theory. The general conclusion is that anisotropic model (and 

isotropic ones) undergo inflation in these theories without having to fine tune parame- 

ters. The general feature is the fact these scalarfields have potentials (in the transformed 

world) that are extremely flat for large positive values of the fields giving rise to exponen- 

tial inflation or have the right curvature to produce power law inflation for large negative 

values of the fields. 

The conclusion was reached not by solving the evolution equations for these fields but 

rather by showing that the energy momenium tensor of these theories satisfies the strong 

and dominant energy conditions and then invoking the No Hair Conjecture. 

WC would like to finish with a few remarks: 

(i) Although the analysis in the fictitious jr-world is easier than in the original g-world, 

wve always have to returu to the original system in order to know what is bappcning to 

our model. 

(ii) The use of conformal transformations is inconsequential because the analysis is 

basically of a classical nature. However, if we were interested in quantum (or semiclas- 
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sical) process, like calculating density perturbation in these models, the two classically 

equivalent systems might not (qnd probably are not) equivalent any longer. 

(iii) We have not consider Weyl curvature square terms because in that case our simple 

transformation breaks down (remember that the Weyl tensor is conformally invariant) and 

so it is impossible to get rid of this term in the action. 
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Figure Caption 

Fig.1 The potential e(+) E V, [l - exp(-2@tr$)]’ with V, = &. The special 

choice n = 1, c = t, K = 1 has been made. 

Fig. 2a View from above of the potential (3.4) for the case V(d) = 0 and t = 0.01. Both 

the flat plateau and the minimum are clearly seen. 

Fig. 2b View from below. Here the minimum of the potential is clearly shown. 

Fig. 3a View from above of the potential (3.4) when V(d) = -$az@ + f,i@. in t& 

particular C&SC WC took C = 0.005, mr = 10, X = 0.1 in order to highlight some of 

the features. 

Fig. 3b View from below 

Fig. 4 The potential 3.llwith [ = 0.1, ns = 33.33, X = 0.6 in order to highlight some of 

the features. 
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Table 1: Cd = [ = 0 

so bocpu,c~w’ co t 9w Inflation Ref. 

0 0 0 O<(CCl Wt)rlrY Y WI - 
1 Q 0 < 10-a BYthv Y P31 

0 0 #O #O 7ij(t)W’(Za)Wj(lP) ’ Y *** 

1 0 #O #O -yij(t)wi(z”)wj(zP) I y *** ! 

Table2: C+#O,A=O 
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